

Calvin Schmidt

Georg Schmidt

Technology Engineers

5.Nov 2024

AOUG Frühstück
JSON in der Datenbank

Agenda: JSON in der Datenbank

•Frühstück und Begrüßung

•Überblick 23AI für Entwickler

•JSON in der Oracle Datenbank

•Mongo DB API

•JSON Relational Duality Views

•Praktische Beispiele

•Erfahrungsaustausch

3 Copyright © 2024, Oracle and/or its affiliates

4 Copyright © 2024, Oracle and/or its affiliates

Make modern apps and analytics
easy to generate and run
for all use cases at any scale

Oracle Database Vision
With Generative AI (LLM)

•Client/Server mode
•Clustered Configuration
(VAX Clusters)
•Security and Audit Features

•Distributed Queries
(single query access to data
stored in multiple locations)
•SQL * Forms is released
•SQL * Plus is released

Oracle becomes a publicly
traded company

V5.1

Copyright © 2024, Oracle and/or its affiliates5

1977

Software Development

Laboratories (SDL)

Santa Clara, California

1979

SDL becomes

Relational Software

Systems, Inc.

•First commercial

RDBMS

1981

C Programming

Language

chosen for v3

1982

Relational Software

Systems, Inc.

becomes Oracle

•Read Consistency
•Export/Import
utility
•Early Reporting
capabilities

•Row level locking
•Hot backup
•First version of PL/SQL
•High Speed OLTP

•OPS for VAX Cluster
•Foundations for

HA & Scalability
•Oracle Card
•1-2-3 Data Lens

•PL/SQL Stored procedures
•Triggers
•Distributed 2-phase commit
•Shared cursors
•Cost based optimizer

•Recovery Manager
•Partitioning
•Expanded support for Java

•Native Internet Protocols
•Virtual Private Database
•Standby Database
foundation for Data Guard

•Real Application
Clusters (RAC)
• Integrated Data
Mining with OLAP
•Data Guard Broker

First Database designed for
enterprise grid computing

Foundation for:
•Grid Infrastructure, ASM
•Flashback Database

Foundation for:
•Real Application Testing
•Database Vault
•Advanced Compression & TDE
•Data Guard Fast-Start Failover

Foundation for:
•Active Data Guard
•Secure Files

•Multitenant Architecture
• In-Memory Column Store
•Native JSON
•SQL Pattern Matching

•Sharding
•Snapshot-based
replication
•PDB Hot Clone
•Enhanced
Partitioning

•Autonomous Database
announced
•User-defined sharding
•PDB Snapshot carousel
•DB In-memory support for
External tables

Generally Available since
April 2019
• Automatic Indexing
• Hybrid Partition Tables
• Active Data Guard DML

Redirect

V4

V6.2

V7

V8

V8.1

V9.1

10g

10gR
2

11g

12c

12c
R2

18g

19c

21c
V6

1977 1979 1981 1982 1983 1984 1985 1986 1988 1991 1992 1997 1998 2001 2003 2005 2007 2009 2013 2016 2018 2019 2020 2023 2024

11gR
2

Foundation for:
•EBR, HCC, Data Redaction
•ACFS
•Golden Gate Replication

Portability at its best
•Atomic execution of SQL
statements
•Nonblocking queries
•Mapping of data in pre-
join formats

V3

V5

Innovation Release
• Per-PDB Data Guard
• Native JSON Type
• SQL Macros
• JavaScript Stored

Logic

23ai
•AI Vector Search
• JSON Duality
•Graph
•TrueCache
•Global Distributed
Database

Oracle DB | History

Oracle Database 23ai: AI Made Simple for Enterprise Data

Copyright © 2024, Oracle and/or its affiliates6

Globally
Distributed
Database

Over 50 SQL
simplifications

True Cache

Lock-Free
Reservations

SQL Firewall

Property
Graphs

JSON / Relational
Duality

Read-Only
Per-PDB
Standby

Priority Transactions

Developer Role

JavaScript
Stored

Procedures

Real-time SQL Plan
Management

Rolling
Patching

AI Vector Search

Microservice Support

Lock-Free
long-running
transactions

Data
Use Case
Domains

Unifies JSON Document, Graph, and AI with Relational Models

Unification of
JSON and Relational

Unification of
Graph and Relational

Unification of
AI and Databases

Next Generation Converged Database – Database 23ai

Copyright © 2024, Oracle and/or its affiliates7
Copyright © 2024, Oracle and/or its affiliates

Per-PDB standby databases
can now be opened for read-
only workloads

Improving production
database performance
by offloading resource-
intensive backup and
reporting operations to
standby systems

Database sharding with Raft
replication supports
applications that require low
latency and high availability
plus helps meet data
sovereignty requirements

A (nearly) disk-less Oracle
database instance that is
deployed as a cache

Unlike conventional mid-tier
caches such as Redis, data in
True Cache is automatically
updated

ANY SQL Query can be
transparently directed to the
cache instead of the
database

Automatically prioritizes
high-priority transactions
over low-priority
transactions

Low-priority transactions
that block high-priority
transactions will be
automatically aborted

Oracle Database 23ai Mission Critical Apps Enhancements

Priority Transactions True Cache
Active-Active

Globally Distributed
Database

Readable Per-PDB
Standby

Copyright © 2024, Oracle and/or its affiliates8 Copyright © 2024, Oracle and/or its affiliates8

Oracle Database 23ai True Cache

True Cache is an in-memory, consistent, and automatically managed full SQL cache

Copyright © 2024, Oracle and/or its affiliates9

App Server

• Solid lines represent

relatively frequent

requests

• Dotted lines represent

relatively infrequent

requests

App connect to True
Cache and perform
SQL queries

Committed dataTrue
Cache

True
CacheMiss Miss

Redo Redo

App Server App Server App Server

Primary Server

Users may be created as, or
altered to, READ ONLY
status (default READ WRITE)

ALTER USER joe
READ ONLY;

Read-only users can not
insert or update data, nor
can they create database
objects

It’s complex to grant all the
privileges developers need to
create, debug, etc.

Now it’s simple using the
new DB_DEVELOPER_ROLE :

GRANT DB_DEVELOPER_ROLE
TO scott;

An easy-to-use firewall
solution, with minimal perf
and operational overhead

Built-in to ensure it cannot
be bypassed

Protection against attacks by
monitoring and blocking
“unauthorized SQL” and SQL
injection attacks

In-Database Firewall

Oracle Database 23ai Security Enhancements

Read-Only Users Developer Role Schema Privileges

Managing the privileges on
all the tables, views, and
procedures used by an app
can be tricky

Now this is simple using
GRANT on a schema

GRANT SELECT ANY TABLE
ON SCHEMA sales
TO mary;

Copyright © 2024, Oracle and/or its affiliates10 Copyright © 2024, Oracle and/or its affiliates10

Automatically repairs SQL
performance regressions

The optimizer detects a plan
regression and tries to find a
previous plan with better
performance

If an alternative plan is found
to perform better, a SQL plan
baseline is automatically
created and that plan will be
used

Enables non-rolling patches
to be applied online in stages

Phase 1:
The patch is applied to all
instances but not enabled

Phase 2:
The patch is enabled via a
SQL command

Improved error messages
that provide useful problem
diagnosis in context and
suggest actionable solutions.
Easily searchable error
message portal.

New attention log that
highlights issues requiring
prompt remediation

A simple way to reclaim
unused or free space in a
tablespace

Optimizes the storage of big
file tablespaces by moving
objects to the datafile head,
and then resizing the datafile
by removing the tail

Shrink Tablespace

Oracle Database 23ai Manageability and Availability Enhancements

Real-time SQL Plan
Management

Enhanced Error
Messages & Logging

Rolling Patching for
Complex Changes

Copyright © 2024, Oracle and/or its affiliates11 Copyright © 2024, Oracle and/or its affiliates11

Property Graph Views in Oracle Database 23ai
Allow queries between connections and relationships in the data

12 Copyright © 2024, Oracle and/or its affiliates

For example, to discover indirect money
movements from bank account 'B' to bank
account 'E'

D

A

C

B

Z

E

FH

G

SELECT graph.path
FROM GRAPH_TABLE (

bank_graph
MATCH (v1)-[e is BANK_TRANSFERS]->{1,3} (v2)
WHERE v1.id = 'B'
AND v2.id = 'E'

COLUMNS LISTAGG(e.to_acc, ',') AS path)
) graph

;

Support for up to 4096
columns per table

Simplifies development of
applications that need large
numbers of attributes such
as for ML and IoT workloads

ALTER SYSTEM SET
max_columns = EXTENDED;

CREATE TABLE customers(
cust_id number,
Active boolean);

SELECT cust_id
FROM customers
WHERE active;

Allows applications to
reserve part of a value in a
column without locking the
row

For example, reserve part of
a bank account balance or
reserve an item in inventory
without locking out all other
operations on the bank
account or item

Lock-free Column
Value Reservations

JavaScript joins PL/SQL & Java
as first-class
server-side dev languages

Executed by our fast
Multilingual Engine (MLE),
powered by GraalVM

Reduces the number of
roundtrips to the database

JavaScript
Stored Procedures

Oracle Database 23ai – Additional Features For App Dev

Wider Tables Boolean Datatype

A more intuitive way of
storing and manipulating
logical values within the
database

Copyright © 2024, Oracle and/or its affiliates13 Copyright © 2024, Oracle and/or its affiliates13

Copyright © 2024, Oracle and/or its affiliates14

Carl Olofson, Research VP,
Data Management Software, IDC, says:

”Oracle’s JSON Relational Duality, a truly revolutionary
solution, is perhaps one of the most important innovations
in information science in 20 years.”

Simple Example: Conference

Copyright © 2024, Oracle and/or its affiliates15

SessionAttendee Speaker

Entities

Simple Example: Conference

Copyright © 2024, Oracle and/or its affiliates16

SessionAttendee Speaker

Relationships, Cardinalities

N M N 1

Simple Example: Conference, RELATIONAL

Copyright © 2024, Oracle and/or its affiliates17

SessionAttendee Speaker

Relationships, Cardinalities

N M N 1

Tables

ATTENDEE

AID NAME

A1 Jill

A2 Sanjay

SESSION

SID NAME ROOM SPID

S1 JSON OSLO SP1

S2 SQL TOKYO SP2

SPEAKER

SPID NAME PHONE

SP1 Carla 650..

SP2 Pascal 408...

ATT_SES_MAP

AID SID

A1 S1

A2 S2

Simple Example: Conference, RELATIONAL

Copyright © 2024, Oracle and/or its affiliates18

SessionAttendee Speaker
N M N 1

References, Links → used for Joins

ATTENDEE

AID NAME

A1 Jill

A2 Sanjay

SESSION

SID NAME ROOM SPID

S1 JSON OSLO SP1

S2 SQL TOKYO SP2

SPEAKER

SPID NAME PHONE

SP1 Carla 650..

SP2 Pascal 408...

ATT_SES_MAP

AID SID

A1 S1

A2 S2

Relational: the GOOD

Copyright © 2024, Oracle and/or its affiliates19

ATTENDEE

AID NAME

A1 Jill

A2 Sanjay

SESSION

SID NAME ROOM SPID

S1 JSON OSLO SP1

S2 SQL TOKYO SP2

SPEAKER

SPID NAME PHONE

SP1 Carla 650..

SP2 Pascal 408...

ATT_SES_MAP

AID SID

A1 S1

A2 S2

⨁ No data duplication, consistency is guaranteed
⨁ Use case flexibility

• Examples: session catalog, speaker/attendee/room schedules,...
• access any number of tables (with joins)
• select only those column values that are needed

⨁ declarative language to express operations: SQL
• many ways to improve access performance (indexes, in-memory, ...)
• optimizer picks the best execution plan

Relational: the BAD

Copyright © 2024, Oracle and/or its affiliates20

ATTENDEE

AID NAME

A1 Jill

A2 Sanjay

SESSION

SID NAME ROOM SPID

S1 JSON OSLO SP1

S2 SQL TOKYO SP2

SPEAKER

SPID NAME PHONE

SP1 Carla 650..

SP2 Pascal 408...

ATT_SES_MAP

AID SID

A1 S1

A2 S2

⊖ Requires upfront schema definition
• tables, columns, data types
• "schema first, data later"
• harder to evolve: not schema-flexible

⊖ 'Normalization' breaks business objects into many tables
⊖ SQL is usually not integrated into the programming language:

• SQL is a string (sometimes generated by an ORM tool)

App Dev Example — Conference Schedule

Copyright © 2024, Oracle and/or its affiliates21

Developing apps using normalized tables is very flexible,
but it is not always easy for developers.

AT T E N D E E

S P E A K E R

S E S S I O N

AT T _ S E S S _ M A P

SQL

SESSION SCHEDULE FOR JILL
(AC M E I N C)

Time 4:00 PM
Room B405
Teacher Beda

Time 2:00 PM
Room A102
Teacher Pascal

Hackolade Demo SQL for Dummies

To build Jill’s schedule, the developer must run
database operations on each of the four tables.

SQL

SQL

SQL

Relational Data and Developers

Copyright © 2024, Oracle and/or its affiliates22

Ideally, the developer wants to build Jill’s schedule

using a single simple database operation

Database

Operation

SESSION SCHEDULE FOR JILL
(AC M E I N C)

Time 4:00 PM
Room B405
Teacher Beda

Time 2:00 PM
Room A102
Teacher Pascal

Hackolade Demo SQL for Dummies

SESSION SCHEDULE FOR JILL
(AC M E I N C)

Time 4:00 PM
Room B405
Teacher Beda

Time 2:00 PM
Room A102
Teacher Pascal

Hackolade Demo SQL for Dummies

JSON: Attendee Schedule

Copyright © 2024, Oracle and/or its affiliates23

{
"_id" : "3245",
"name" : "Jill",
"company" : "ACME Inc",
"schedule" : [

{
"code" : "DB12",
"session" : "SQL",
"time" : "14:00",
"room" : "A102",
"speaker" : "Adam"

},
{

"code" : "CODE3",
"session" : "NodeJs",
"time" : "16:00",
"room" : "R12",
"speaker" : "Claudia"

}
]

}

JSON: Attendee Schedule

Copyright © 2024, Oracle and/or its affiliates24

Session

Attendee

Speaker

{
"_id" : "3245",
"name" : "Jill",
"company" : "ACME Inc",
"schedule" : [

{
"code" : "DB12",
"session" : "SQL",
"time" : "14:00",
"room" : "A102",
"speaker" : "Adam"

},
{

"code" : "CODE3",
"session" : "NodeJs",
"time" : "16:00",
"room" : "R12",
"speaker" : "Claudia"

}
]

}

Attendee hierarchy

JSON: Session Catalog

Copyright © 2024, Oracle and/or its affiliates25

{
"code" : "DB12",
"name". : "SQL",
"time" : "14:00",
"room" : "A102",
"speaker" : "Adam",
"numAtt" : 12,
"roomCap" : 60

}

{
"code" : "CODE2",
"name". : "NodeJS",
"time" : "16:00",
"room" : "R12",
"speaker" : "Claudia",
"numAtt" : 75,
"roomCap" : 75

}

Session

Attendee

Speaker

Session hierarchy

JSON: Speaker Schedule

Copyright © 2024, Oracle and/or its affiliates26

Speaker hierarchy {
"speakerId" : "S1",
"name". : "Adam",
"phone" : "650-392-000",

}

{
"speakerId" : "S2",
"name". : "Claudia",
"phone" : "+49 871 393",

}

Session

Speaker

JSON: too many hierarchies

Copyright © 2024, Oracle and/or its affiliates27

Speaker hierarchy

Session

Speaker Session

Attendee

Speaker

Session hierarchy

Session

Attendee

Speaker

Attendee hierarchy

JSON: the GOOD, the BAD

Copyright © 2024, Oracle and/or its affiliates28

⨁ JSON Object contains all information for one use case

• No joins needed

⨁ Object usually retrieved by a simple 'get' operation (e.g. REST, document API)

• No SQL strings in the programming language

⨁ JSON is schema-flexible: "data first, schema later"

⊖ Single hierarchy is only possible for few simple use cases!

⊖ Embedding of the same values causes duplication!

⊖Much harder to keep consistent and optimize

Initial simplicity for the developer causes long term complexities

Can't we normalize JSON
the same way as tables?

29 Copyright © 2024, Oracle and/or its affiliates

Document Database Normalization

Copyright © 2024, Oracle and/or its affiliates30

{
"attendee : "S3245",
"name" : "Jill",
"schedule" :

[{
"time" : "14:00",
"session" : "SQL++",
"room" : "A102",
"speaker" : "Adam"

},
…

]
}

S C H E D U L E F O R : J I L L

{
"attendee" : "S3245",
[{"session" : "M201 }

…]
}

{
"attendeeId" : "S3245",
"name" : "Jill",
"company" : "ACME inc"

…}

{
"sessionId" : "M201",
"name" : "SQL++",
"teacher" : "T543"

…}

{
”speakerId" : "T543",
"name" : "Adam"

…}

When documents
are normalized

their simplicity is lost

31 Copyright © 2024, Oracle and/or its affiliates

Document Database Fragmentation

Copyright © 2024, Oracle and/or its affiliates32

AT T E N D E E

S P E A K E R

S E S S I O N

S C H E D U L E
Normalizing produces the

worst of both worlds

• The structure now mirrors the

normalized tables

• Without gaining the power of

SQL and relational at the

database level

• Referential integrity must be

enforced by every app

• Performance suffers due to

reference chasing and loss of

shard locality

{
"attendee" : "S3245",
[{"session" : "M201 }

…]
}

{
"attendeeId" : "S3245",
"name" : "Jill",
"company" : "ACME inc"

…}

{
"sessionId" : "M201",
"name" : "SQL++",
"teacher" : "T543"

…}

{
”speakerId" : "T543",
"name" : "Adam"

…}

Big Picture — Documents

Copyright © 2024, Oracle and/or its affiliates33

JSON

B
en

ef
it

s

Use Case Complexity

Documents are great

for simple apps

Big Picture — Documents

Copyright © 2024, Oracle and/or its affiliates34

JSON

B
en

ef
it

s

Use Case Complexity

Become hazardous as

apps get more complex

Because of this,

many data experts

consider pure Document

Databases an anti-pattern

Big Picture — Relational

Copyright © 2024, Oracle and/or its affiliates35

B
en

ef
it

s

Use Case Complexity

Relational

Relational is not as easy

for simple apps

Its power becomes vital

as app complexity

increases

Oracle Enables Developers to Deliver the Best of Both

Copyright © 2024, Oracle and/or its affiliates36

B
en

ef
it

s

Use Case Complexity

JSON

With Oracle, developers

can already choose the data

format that maximizes the

benefits for each use case

Relational

This is great
Can we do even better?

37 Copyright © 2024, Oracle and/or its affiliates

Instead of choosing
Relational OR Documents

Can we get the benefits of
Relational PLUS Documents?

38 Copyright © 2024, Oracle and/or its affiliates

Can We Get All the Benefits of Both, for Every Use Case?

Copyright © 2024, Oracle and/or its affiliates39

B
en

ef
it

s

Use Case Complexity

JSON

PLUS

JSON PLUS Relational
Relational

• Use Case Flexibility

• Queryability

• Consistency

• Space Efficiency

Document

• Easy mapping to language types

• Agile schema-less development

• Hierarchical data format

• Standard interchange format

Copyright © 2024, Oracle and/or its affiliates40

It’s here, we call it
JSON Document Relational Duality

JSON Document Relational Duality

Copyright © 2024, Oracle and/or its affiliates41

Data is stored as rows

in tables to provide the benefits of the

relational model and SQL access

Storage Format

T A B L E
Column 1 Column 2 Column 3

… … …

… … …

… … …

… … …

T A B L E
Column 1 Column 2 Column 3

… … …

… … …

… … …

… … …

T A B L E
Column 1 Column 2 Column 3

… … …

… … …

… … …

… … …

Rows can include JSON columns to store

data whose schema is dynamic or evolving

JSON Document Relational Duality

Copyright © 2024, Oracle and/or its affiliates42

Data is stored as rows

in tables to provide the benefits of the

relational model and SQL access

Storage Format

T A B L E
Column 1 Column 2 Column 3

… … …

… … …

… … …

… … …

T A B L E
Column 1 Column 2 Column 3

… … …

… … …

… … …

… … …

T A B L E
Column 1 Column 2 Column 3

… … …

… … …

… … …

… … …

Rows can include JSON columns to store

data whose schema is dynamic or evolving

Rows can include VECTOR columns to support

AI similarity search operations

JSON Document Relational Duality

Copyright © 2024, Oracle and/or its affiliates43

Data is stored as rows

in tables to provide the benefits of the

relational model and SQL access

Storage Format

Data can be accessed as JSON documents

to deliver the application simplicity of

documents for each use case

Access Formats

{
"label1" : "String Anita",
"label2" : 5678
"label3" : ”Physics 201",

}

{
"label1" : ”Student Jill",
"label2" : 5678
"label3" : ”Science 102",

}

{
"name1" : "String Value1",
"name2" :

{
"name3" : "14:00",
"name4" : 1234

}
}

T A B L E
Column 1 Column 2 Column 3

… … …

… … …

… … …

… … …

T A B L E
Column 1 Column 2 Column 3

… … …

… … …

… … …

… … …

T A B L E
Column 1 Column 2 Column 3

… … …

… … …

… … …

… … …

The structure of the view mirrors the structure
of the desired JSON, making it simple to define

Copyright © 2024, Oracle and/or its affiliates44

CREATE JSON DUALITY VIEW attendeeSchedule
AS attendee
{

_id : aid
name : name
company : company
schedule : attendee_sessions
[{

session @unnest
{

code : sid
session : sname
time : time
room : room
speaker @unnest
{
speaker : sname

}
}

}]
};

{
"_id" : "3245",
"name" : "Jill",
"company" : "ACME Inc",
"schedule" : [

{
"code" : "DB12",
"session" : "SQL",
"time" : "14:00",
"room" : "A102",
"speaker" : "Adam"

},
…

]
}

Uses familiar
GraphQL syntax

S C H E D U L E F O R : J I L L

CREATE JSON DUALITY VIEW attendeeSchedule
AS attendee
{

_id : aid
name : name
company : company
schedule : attendee_sessions
[{

session
{

code : sid
session : sname
time : time
room : room
speaker
{
speaker : sname

}
}

}]
};

The view simply specifies the tables that contain
the data to include in the JSON document

Copyright © 2024, Oracle and/or its affiliates45

S P E A K E R

S E S S I O N

AT T E N D E E

AT T E N D E E _ S E S S I O N

CREATE JSON DUALITY VIEW attendeeSchedule
AS attendee
{

_id : aid
name : name
company : company
schedule : attendee_sessions
[{

session
{

code : sid
session : sname
time : time
room : room
speaker
{
speaker : sname

}
}

}]
};

The view simply specifies the tables that contain
the data to include in the JSON document

Copyright © 2024, Oracle and/or its affiliates46

AT T E N D E E

AID NAME COMPANY PHONE

3245 Jill ACME Inc 650

… … … …

… … … …

… … … …

CREATE JSON DUALITY VIEW attendeeSchedule
AS attendee
{

_id : aid
name : name
company : company
schedule : attendee_sessions @delete @insert @Update
[{

session
{

code : sid
session : sname
time : time
room : room
speaker
{
speaker : sname

}
}

}]
};

The view simply specifies the tables that contain
the data to include in the JSON document

Copyright © 2024, Oracle and/or its affiliates47

update rules

CREATE JSON DUALITY VIEW attendeeSchedule
AS attendee
{

_id : aid
name : name
company : company
schedule : attendee_sessions @delete @insert @Update
[{

session
{

code : sid
session : sname
time : time
room : room
speaker @unnest
{
speaker : sname

}
}

}]
};

The view simply specifies the tables that contain
the data to include in the JSON document

Copyright © 2024, Oracle and/or its affiliates48

display rules

Example of Using Duality Views

Copyright © 2024, Oracle and/or its affiliates49

Selecting from the schedule, Duality View accesses the underlying
tables and returns Jill’s schedule as a JSON document

• This document has all the data needed by the use case

• And the IDs needed to update the data

{
"_id" : "3245",
"name" : "Jill",
"company" : "ACME Inc",
"schedule" : [

{
"code" : "DB12",
"session" : "SQL",
"time" : "14:00",
"room" : "A102",
"speaker" : "Adam"

},
{

"code" : "CODE3",
"session" : "NodeJs",
"time" : "16:00",
"room" : "R12",
"speaker" : "Claudia"

}
]

}

S C H E D U L E F O R : J I L L

Example of Using Duality Views

Copyright © 2024, Oracle and/or its affiliates50

You can access the view using SQL or document APIs

SELECT data
FROM student_schedule s
WHERE s.data.name = 'Jill';

student_schedule.find({"name":"Jill"})

S C H E D U L E F O R : J I L L

{
"_id" : "3245",
"name" : "Jill",
"company" : "ACME Inc",
"schedule" : [

{
"code" : "DB12",
"session" : "SQL",
"time" : "14:00",
"room" : "A102",
"speaker" : "Adam"

},
{

"code" : "CODE3",
"session" : "NodeJs",
"time" : "16:00",
"room" : "R12",
"speaker" : "Claudia"

}
]

}

Extreme Simplicity for Developers

Copyright © 2024, Oracle and/or its affiliates51

JSON Duality Views are extremely simple to access:

• GET a document from the View

• Make any changes needed to the document

• PUT the document back into the View

DatabaseApp

GET Doc

PUT Doc

Change Doc

Extreme Simplicity for Developers

Copyright © 2024, Oracle and/or its affiliates52

The database automatically detects the changes in

the new document and modifies the underlying rows

• All duality views that share the same data
immediately reflect this change

• Developers no longer worry about
inconsistencies

DatabaseApp

GET Doc

PUT Doc

Change Doc

Game Changing Lock-Free Concurrency Control

Copyright © 2024, Oracle and/or its affiliates53

The database automatically detects when the database

data underlying a document has changed between the

initial document read and the subsequent write

• If a change occurred, the write operation is

automatically rejected and returns an error

• The app can then reissue the write based on the

changed data

DatabaseApp

GET Doc

PUT Doc

Change Doc

Reject if Stored
Data Changed

Called Optimistic Concurrency Control

JSON Relational Duality Views Benefits I

Copyright © 2024, Oracle and/or its affiliates54

• Regardless of the role anyone can work on the same data set whether JSON or relational and

can also build blended applications. Developers can use JSON Relational Duality to join

relational and JSON (semi-unstructured) data efficiently.

• Data consistency and integrity across data models and use cases as data is always current and

with no lagging and staleness.

• Data stored in Duality Views can be accessed via SQL, REST, document APIs (MongoDB

compatible) and many languages and drivers/tool, giving developers broad choices for all use

cases.

JSON Relational Duality Views Benefits II

Copyright © 2024, Oracle and/or its affiliates55

• Better database performance and scalability for mixed workloads (relational + semi-

structured).

• Duality View eliminates the need for complex ORMs outside the database because the

app developers can directly map programming objects to Duality Views.

• Duality Views are programming language independent where as ORMs support only one

programming language. All that makes app development simple and agile.

15 Copyright © 2024, Oracle and/or its affiliates

JSON Collections and the
MongoDB API

A native MongoDB API compatible document store

Copyright © 2024, Oracle and/or its affiliates56

Oracle Database API for MongoDB
Connect MongoDB client drivers and tools to Oracle Database

MongoDB does not have tables – it stores collections of JSON documents

• Transparency simplifies migrations from MongoDB to Oracle

MongoDB developers keep using the same skills, tools, and frameworks

57 Copyright © 2024, Oracle and/or its affiliates

Oracle Database MongoDB Application

MongoDB Wire
Protocol

SQL*Net

Mongo API

{ }

Oracle Database API for MongoDB
Connect MongoDB client drivers and tools to Oracle Database

MongoDB does not have tables – it stores collections of JSON documents

• Transparency simplifies migrations from MongoDB to Oracle

MongoDB developers keep using the same skills, tools, and frameworks

Enhance applications with SQL passthrough

• Statements and data

58 Copyright © 2024, Oracle and/or its affiliates

Oracle Database MongoDB Application

MongoDB Wire
Protocol

SQL*Net

Mongo API

SQL passthrough

{ }

A document is a JSON value

A database contains collections

Access data programmatically –
"No SQL"

A collection contains documents

Structure is flexible

Supports insert, get, update, filter

Copyright © 2024, Oracle and/or its affiliates

MongoDB Example

MongoClient mongoClient = MongoClients.create(connString);

MongoDatabase database = mongoClient.getDatabase("admin");

MongoCollection<Document> coll =
database.createCollection("movies");

Document movie = Document.parse(json);
coll.insertOne(movie);

Bsonfilter =eq("title", "Iron Man");

MongoCursor<Document> cursor = coll.find(filter).cursor();

Document doc=cursor.next();

JSON Collections

15 Copyright © 2024, Oracle and/or its affiliates59

Copyright © 2024, Oracle and/or its affiliates

Database => Schema

Collections created in database
"admin" will be in the “ADMIN”
schema

MongoDB Example

MongoClient mongoClient = MongoClients.create(connString);

MongoDatabase database = mongoClient.getDatabase("admin");

MongoCollection<Document> coll =
database.createCollection("movies");

Document movie = Document.parse(json);
coll.insertOne(movie);

Bsonfilter =eq("title", "Iron Man");

MongoCursor<Document> cursor = coll.find(filter).cursor();

Document doc=cursor.next();

JSON Collections

15 Copyright © 2024, Oracle and/or its affiliates60

Copyright © 2024, Oracle and/or its affiliates

Collection => Table
Collections are an abstraction or
view of a table with a single JSON
column.

MongoDB Example

create table

movies (

ID VARCHAR2,

DATA JSON

);

MongoClient mongoClient = MongoClients.create(connString);

MongoDatabase database = mongoClient.getDatabase("admin");

MongoCollection<Document> coll =
database.createCollection("movies");

Document movie = Document.parse(json);
coll.insertOne(movie);

Bsonfilter =eq("title", "Iron Man");

MongoCursor<Document> cursor = coll.find(filter).cursor();

Document doc=cursor.next();

JSON Collections

15 Copyright © 2024, Oracle and/or its affiliates61

Document => Row

Inserting a document into a
collection inserts a row into the
backing table.

MongoDB Example

insert into movies

(data)

values

(:1)

;

Copyright © 2024, Oracle and/or its affiliates

MongoClient mongoClient = MongoClients.create(connString);

MongoDatabase database = mongoClient.getDatabase("admin");

MongoCollection<Document> coll =
database.createCollection("movies");

Document movie = Document.parse(json);
coll.insertOne(movie);

Bsonfilter =eq("title", "Iron Man");

MongoCursor<Document> cursor = coll.find(filter).cursor();

Document doc=cursor.next();

JSON Collections

15 Copyright © 2024, Oracle and/or its affiliates62

Copyright © 2024, Oracle and/or its affiliates

MongoClient mongoClient = MongoClients.create(connString);

MongoDatabase database = mongoClient.getDatabase("admin");

MongoCollection<Document> coll =
database.createCollection("movies");

Document movie = Document.parse(json);
coll.insertOne(movie);

Bsonfilter = eq("title", "Iron Man");

MongoCursor<Document> cursor = coll.find(filter).cursor();

Document doc=cursor.next();

Filter => Query

Filter expressions are executed as SQL
over the backing table. Fully utilizes
core Oracle Database features such as
indexing, cost- based optimization,
etc.

select data from movies e

where e.data.title =

'Iron Man'

MongoDB Example

JSON Collections

15 Copyright © 2024, Oracle and/or its affiliates63

Copyright © 2024, Oracle and/or its affiliates

Installing Database API for MongoDB for any Oracle Database
Steps

Step 1: Download

Step 2: Create Directories

Step 3: Unzip the ORDS download

Step 4: Set Environment Variables

Step 5: Run the ORDS installer

Step 6: Configure ORDS to enable MongoDB API

Step 7: Restart ORDS

Step 8: Configure a database user

Step 9: (Optional) Run Database Actions by opening http://localhost:8080/ords/sql-developer

Step 10: Configure Firewall

15 Copyright © 2024, Oracle and/or its affiliates64

Store, use, and manage collections, JSON documents,
and relational data in a single converged database.
Unified management, security, consistency model

Comprehensive document-store APIs and language
support for Java, Python, node.js, and others, supporting
MongoDB and Oracle SODA. No knowledge of Oracle or
SQL required

Leverage existing MongoDB skills and easily move your
applications and data to a single converged database and
work with your data in whole new ways

1

2

3

3 Key Takeaways

Copyright © 2024, Oracle and/or its affiliates65 Copyright © 2024, Oracle and/or its affiliates65

Get Hands On with JSON

Copyright © 2024, Oracle and/or its affiliates66

livelabs.oracle.com

Store query, and process JSON
documents in collections using
MongoDB API and SQL/JSON

Use SQL to query, generate and
process JSON data

Configure the Mongo API to query or
manipulate data in the Oracle
Database

Learn the newest SQL Enhancements
to work with JSON data

Where To Get More Information

Live Lab: Developing with JSON and SODA

Live Lab: Using the Database API for MongoDB

LiveSQL: SQL/JSON features

O.com: JSON-based Development in Oracle Database

O.com: Autonomous JSON Database

Documentation: JSON Developer's Guide

Documentation: Overview of Oracle Database API for MongoDB

@bch_t @juliandontcheff @OracleDatabase

DW-PM_us@oracle.com

Copyright © 2024, Oracle and/or its affiliates67 Copyright © 2024, Oracle and/or its affiliates67

https://bit.ly/LiveLab_JSON_Soda
https://bit.ly/LiveLab_Using_MongoDB_API
https://bit.ly/LiveSQL_JSON_features
https://bit.ly/JSON_DocDB
https://bit.ly/AJD_ocom
https://bit.ly/JSON_DevGuide_19c
https://bit.ly/Overview_MongoDB_API
http://bit.ly/3HrEEGq
https://twitter.com/OracleDatabase
mailto:DW-pm_us@oracle.com

